Exercise 6

Convert each of the following IVPs in 1-8 to an equivalent Volterra integral equation:

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}+y=x, y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=1
$$

Solution

Let

$$
\begin{equation*}
y^{\prime \prime \prime}(x)=u(x) \tag{1}
\end{equation*}
$$

Integrate both sides from 0 to x.

$$
\begin{aligned}
\int_{0}^{x} y^{\prime \prime \prime}(t) d t & =\int_{0}^{x} u(t) d t \\
y^{\prime \prime}(x)-y^{\prime \prime}(0) & =\int_{0}^{x} u(t) d t
\end{aligned}
$$

Substitute $y^{\prime \prime}(0)=1$ and bring it to the right side.

$$
\begin{equation*}
y^{\prime \prime}(x)=1+\int_{0}^{x} u(t) d t \tag{2}
\end{equation*}
$$

Integrate both sides again from 0 to x.

$$
\begin{aligned}
\int_{0}^{x} y^{\prime \prime}(s) d s & =\int_{0}^{x}\left[1+\int_{0}^{s} u(t) d t\right] d s \\
y^{\prime}(x)-y^{\prime}(0) & =x+\int_{0}^{x} \int_{0}^{s} u(t) d t d s
\end{aligned}
$$

Substitute $y^{\prime}(0)=0$.

$$
y^{\prime}(x)=x+\int_{0}^{x} \int_{0}^{s} u(t) d t d s
$$

Use integration by parts to write the double integral as a single integral. Let

$$
\begin{array}{rr}
v=\int_{0}^{s} u(t) d t & d w=d s \\
d v=u(s) d s & w=s
\end{array}
$$

and use the formula $\int v d w=v w-\int w d v$.

$$
\begin{align*}
y^{\prime}(x) & =x+\left.s \int_{0}^{s} u(t) d t\right|_{0} ^{x}-\int_{0}^{x} s u(s) d s \\
& =x+x \int_{0}^{x} u(t) d t-\int_{0}^{x} s u(s) d s \\
& =x+x \int_{0}^{x} u(t) d t-\int_{0}^{x} t u(t) d t \\
& =x+\int_{0}^{x}(x-t) u(t) d t \tag{3}
\end{align*}
$$

Integrate both sides again from 0 to x.

$$
\begin{aligned}
& \int_{0}^{x} y^{\prime}(r) d r=\int_{0}^{x}\left[r+\int_{0}^{r}(r-t) u(t) d t\right] d r \\
& y(x)-y(0)=\frac{x^{2}}{2}+\int_{0}^{x} \int_{0}^{r}(r-t) u(t) d t d r
\end{aligned}
$$

Substitute $y(0)=1$ and bring it to the right side.

$$
y(x)=1+\frac{x^{2}}{2}+\int_{0}^{x} \int_{0}^{r}(r-t) u(t) d t d r
$$

In order to evaluate the double integral, switch the order of integration so that $d r$ comes first.

Figure 1: The current mode of integration in the $t r$-plane is shown on the left. This domain will be integrated over as shown on the right to simplify the integral.

$$
\begin{align*}
y(x) & =1+\frac{x^{2}}{2}+\int_{0}^{x} \int_{t}^{x}(r-t) u(t) d r d t \\
& =1+\frac{x^{2}}{2}+\left.\int_{0}^{x}\left[\frac{(r-t)^{2}}{2}\right]\right|_{t} ^{x} u(t) d t \\
& =1+\frac{x^{2}}{2}+\int_{0}^{x} \frac{(x-t)^{2}}{2} u(t) d t \\
& =1+\frac{x^{2}}{2}+\frac{1}{2} \int_{0}^{x}(x-t)^{2} u(t) d t \tag{4}
\end{align*}
$$

Substitute equations (1), (2), (3), and (4) into the original ODE.

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}+y=x \quad \rightarrow \quad u(x)-2\left[1+\int_{0}^{x} u(t) d t\right]+\left[1+\frac{x^{2}}{2}+\frac{1}{2} \int_{0}^{x}(x-t)^{2} u(t) d t\right]=x
$$

Expand the left side.

$$
u(x)-2-2 \int_{0}^{x} u(t) d t+1+\frac{x^{2}}{2}+\frac{1}{2} \int_{0}^{x}(x-t)^{2} u(t) d t=x
$$

$$
\begin{gathered}
u(x)-1+\frac{x^{2}}{2}+\int_{0}^{x}(-2) u(t) d t+\int_{0}^{x} \frac{1}{2}(x-t)^{2} u(t) d t=x \\
u(x)-1+\frac{x^{2}}{2}+\int_{0}^{x}\left[-2+\frac{1}{2}(x-t)^{2}\right] u(t) d t=x \\
u(x)=1+x-\frac{x^{2}}{2}-\int_{0}^{x}\left[-2+\frac{1}{2}(x-t)^{2}\right] u(t) d t
\end{gathered}
$$

Therefore, the equivalent Volterra integral equation is

$$
u(x)=1+x-\frac{x^{2}}{2}+\int_{0}^{x}\left[2-\frac{1}{2}(x-t)^{2}\right] u(t) d t .
$$

This answer is in disagreement with the answer at the back of the book,

$$
u(x)=1+x-\frac{1}{2} x^{2}+2 \int_{0}^{x}\left[1-\frac{1}{2}(x-t)^{2}\right] u(t) d t .
$$

The general solution to the ODE, $y^{\prime \prime \prime}-2 y^{\prime \prime}+y=x$, is

$$
y(x)=C_{1} e^{\frac{1}{2}(1-\sqrt{5}) x}+C_{2} e^{\frac{1}{2}(1+\sqrt{5}) x}+C_{3} e^{x}+x .
$$

Using the initial conditions, $y(0)=1, y^{\prime}(0)=0$, and $y^{\prime \prime}(0)=1$, the constants of integration, C_{1}, C_{2}, and C_{3}, can be determined.

$$
\begin{aligned}
& C_{1}=1+\frac{\sqrt{5}}{5} \\
& C_{2}=\frac{2(3 \sqrt{5}-5)}{5(\sqrt{5}-1)} \\
& C_{3}=-1
\end{aligned}
$$

Plugging these in to $y(x)$ and then taking three derivatives of it gives us $u(x)$ by equation (1).

$$
\begin{aligned}
u(x) & =y^{\prime \prime \prime}(x) \\
& =\frac{1}{5} e^{\frac{1}{2}(1-\sqrt{5}) x}\left[5-3 \sqrt{5}+(5+3 \sqrt{5}) e^{\sqrt{5} x}-5 e^{\frac{1}{2}(1+\sqrt{5}) x}\right]
\end{aligned}
$$

This solution satisfies the Volterra integral equation I obtained but not the one at the back of the book.

